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Housekeeping
Short Assignments:

Short Assignments are due by 5 PM Monday every week other than
Week 1 and the week after Midterm week.

Tentatively, Problem Sets are due 5 PM Fridays of Week 2, 4, 7 and 9.

I will drop the three lowest scores of short assignments, and lowest
score of problem set.

No late submission is accepted.

Last reminder.
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Where Are We?

Where we've been
Reviewed core ideas from statistics

Where we're going
Consider how to think about how two variables related to each other.

We will learn the mechanics of Ordinary Least Squares (OLS)
regressions

Interpret regression results (mechanically and critically)

Lays a foundation for more-sophisticated regression techniques.
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Simple Linear RegressionSimple Linear Regression
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Addressing Questions

Example: Effect of education on wages
Policy Question: Does more education increase wages ?

Empirical Question: Does the years of education increase wages ? If so,
by how much ?

How can we answer these questions?

Prior beliefs.

Theory.

Data!
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Addressing Questions with Data
These are data from the 1976 Current Population Survey.

Taken from R package wooldridge, the dataset is called wage1.

526 observations on 24 variables:

The variables are measurements of wages, years of education, level of
work experience, demographics (sex, race, marital status, number of
dependents), location in US, type of industry.
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Take 1: Let's "Look" at Data

Example: Effect of education on wages
Search:

Showing 1 to 6 of 526 entries Previous Next

Wages Education

1 3.1 11

2 3.24 12

3 3 11

4 6 8

5 5.3 12

6 8.75 16
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Take 2

Example: Effect of education on wages
"Looking" at data wasn't especially helpful.

Let's try using a scatter plot.

Plot each data point in -space.

Education on the -axis.

Wages on the -axis.

(X, Y )

X

Y
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Take 2

Example: Effect of education on wages

Sample correlation coef�cient of 0.41 con�rms a positive correlation. 10 / 53



Take 3

Example: Effect of education on wages
But our question was

Does the years of education increase wages ? If so, by how much
?

The scatter plot and correlation coef�cient provide only a partial answer, if
even.

It ONLY tells us that we usually observe higher years of education and
higher wages together.
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Correlation is not causation

Correlation coef�cient is 0.76 even larger that before!
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Take 3

Example: Effect of education on wages
Our next step is to estimate a statistical model.

To keep it simple, we will relate an explained variable  to an explanatory
variable  in a linear model.

Y

X
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Simple Linear Regression Model
We express the relationship between a explained variable and an
explanatory variable as linear:

 is the intercept or constant.

 is the slope coef�cient.

 is an error term or disturbance term.

Yi = β1 + β2Xi + ui.

β1

β2

ui

Simple = Only one explanatory variable.
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Simple Linear Regression Model
The slope coef�cient tells us the expected change in  when  increases
by one unit.

"A one-unit increase in  is associated with a -unit increase in ."

Under certain (strong) assumptions about the error term,  is the effect of 
 on .

Otherwise, it's the association of  with .

Yi Xi

Yi = β1 + β2Xi + ui

Xi β2 Yi

β2

Xi Yi

Xi Yi
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Simple Linear Regression Model
The error term reminds us that  does not perfectly explain .

Represents all other factors that explain .

Useful mnemonic: pretend that  stands for "unobserved" or
"unexplained."

Xi Yi

Yi = β1 + β2Xi + ui

Yi

u
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Take 3, continued

Example: Effect of education on wages
How might we apply the simple linear regression model to our question
about the effect of on education on wages ?

Which variable is ? Which is ?X Y

Wagei = β1 + β2Educationi + ui.
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Take 3, continued

Example: Effect of education on wages
How might we apply the simple linear regression model to our question
about the effect of on education on wages ?

Which variable is ? Which is ?

 is the wage rate without college.
 is the increase in wages when years of education increase by one.

X Y

Wagei = β1 + β2Educationi + ui.

β1

β2
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Take 3, continued

Example: Effect of education on wages

 and  are the population parameters we want, but we cannot observe
them.

Instead, we must estimate the population parameters.

 and  generate predictions of  called .

We call the predictions of the dependent variable �tted values.

Together, these trace a line: .

Wagei = β1 + β2Educationi + ui.

β1 β2

β̂1 β̂2 wagei
^wagei

^wagei = β̂1 + β̂2Educationi
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Take 3, attempted

Example: Effect of education on wages
Guess:  and .β̂1 = 1 β̂2 = 2
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Take 4

Example: Effect of education on wages
Guess:  and .β̂1 = 10 β̂2 = 0
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Residuals
Using  and  to make  generates mistakes called residuals:

Sometimes denoted .

β̂1 β̂2 Ŷi

ûi = Yi − Ŷi.

ei
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Residuals

Example: Effect of education on wages
Using  and  to make  generates residuals.β̂1 = 5 β̂2 = 0.5 ^wagesi
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Residuals
We want an estimator that makes less mistakes in our prediction.

 is a measure of mistake for observation .

So, one measure of total mistake for all observations is 

But mistakes can be positive and negative. When we add them, it cancels
each other. So,  is a bad measure of total mistakes.

Solution: Minimize the sum of squared residuals a.k.a. the residual sum of
squares (RSS).

Squared numbers are never negative.

ûi i

∑n

i=1 ûi

∑n

i=1 ûi
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Residuals

Example: Effect of education on wages
RSS Bigger penalties are given for bigger mistakes in prediction.
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Residuals

Minimizing RSS
We could test thousands of guesses of  and  and pick the pair that
minimizes RSS.

In fact, some estimation process involves doing just that. But that is not
what we are interested in here.

We just do a little math and derive some useful formulas that give us RSS-
minimizing coef�cients without the guesswork.

β̂1 β̂2
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Ordinary Least Squares (OLS)Ordinary Least Squares (OLS)
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OLS
The OLS estimator chooses the parameters  and  that minimize the
residual sum of squares (RSS):

This is why we call the estimator ordinary least squares.

β̂1 β̂2

min
β̂1, β̂2

n

∑
i=1

û
2
i
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Deriving the OLS Estimator

Outline
For details, see textbook. In summary:

Step 1. Replace  with an equivalent expression involving  and 
.

Step 2. Take partial derivatives of our RSS expression with respect to 
and  and set each one equal to zero (�rst-order conditions).

Step 3. Use the �rst-order conditions to solve for  and  in terms of
data on  and .

Step 4. Check second-order conditions to make sure we found the 
and  that minimize RSS.

∑n

i=1 û2
i β̂1

β̂2

β̂1

β̂2

β̂1 β̂2

Yi Xi

β̂1

β̂2
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Deriving OLS estimator, step 1

RSS(β̂1, β̂2) =
n

∑
i=1

û
2
i   ...  We substitute expression for ûi

=
n

∑
i=1

(Yi − β̂1 − β̂2Xi)
2  ...  We expand square term

=
n

∑
i=1

(Y 2
i + β̂

2

1 + β̂
2

2X2
i − 2β̂1Yi − 2β̂2XiYi + 2β̂1β̂2Xi)
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Deriving OLS estimator, step 2

Minimization review
= 0∂RSS

∂β̂1

= 0∂RSS

∂β̂2
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Deriving OLS estimator, step 2 & 3
We take the partial derivatives and set them to zero:

These are called normal equations.

This is a 2x2 simultaneous equation system where we are solving for 
. We know how to solve this !

Step 4 is beyond our scope. Trust me.

= 0 ⟹ 2nβ̂1 − 2∑n

i=1 Yi + 2β̂2 ∑
n

i=1 Xi = 0  . . .   (1)∂RSS

∂β̂1

= 0 ⟹ 2β̂2 ∑
n

i=1 X2
i

− 2∑n

i=1 XiYi + 2β̂1 ∑
n

i=1 Xi = 0  . . .   (2)∂RSS

∂β̂2

β̂1 & β̂2
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OLS Formulas
After solving the simultaneous equation system above, we get:

Slope coef�cient

Intercept

β̂2 =
∑n

i=1(Yi − Ȳ )(Xi − X̄)

∑
n

i=1(Xi − X̄)2

β̂1 = Ȳ − β̂2X̄
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Slope coef�cient
The slope estimator is equal to the sample covariance divided by the
sample variance of :X

β̂2 =

=

= .

∑n
i=1(Yi − Ȳ )(Xi − X̄)

∑
n

i=1(Xi − X̄)2

∑n
i=1(Yi − Ȳ )(Xi − X̄)1

n−1

∑
n

i=1(Xi − X̄)21
n−1

SXY

S2
X
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Coef�cients

Example: Effect of education on wages, take 4
Using the OLS formulas, we get  = -0.9 and  = 0.54.β̂1 β̂2
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Coef�cient Interpretation

Example: Effect of education on wages
Using OLS gives us the �tted line

What does  = -0.9 tell us?

What does  = 0.54 tell us?

Gut check: Does this mean that people without any education pay to work ?
Gut check: Does this mean that one extra year of education cause wages to
go up by $0.54 ?

Probably not. Why?

Wagei = β̂1 + β̂2Educationi Wagei = −0.9 + 0.54 Educationi

β̂1

β̂2
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Coef�cient Interpretation

Correlation is not causation
These points would be discussed in future. I just want to contain your
excitement!

There are many issues with this analysis. Let us discuss a few.

We must think through the data generating process before we interpret the
coef�cients.

In statistics and in empirical sciences, a data generating process
is a process in the real world that "generates" the data one is
interested in. (Prof. Wiki)

37 / 53



Coef�cient Interpretation

Correlation is not causation
Government regulation leads to a situation where most people undergo
10 years of education at the least.

Loosely speaking, we are extrapolating to say things like wage = -0.9 if
years of education = 0.

People with higher educational ability goes to college. They may have
fewer behavioral problems. They may comes from richer families. Wages
are also determined by many other factors - experience, �eld of study,
so many other things. We will tackle that in Multiple Linear Regression.

Our econometric procedure simply captures the association between
lower(higher) levels of education and lower(higher) wages.
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Coef�cient Interpretation
we cannot say that each unit increase in years of education causes
wages to go up by $0.54.

Do we think an additional year of education will have the same impact
regardless of the level of education ?

What about grade 1 vs 2 ? completing 3 years of college vs 4 (and
getting the degree ?)

The correct interpretation is a humble one:

 means that one more year of education is associated with a 0.54
increase in wage rate on average, given everything else remains constant.
β̂2 = 0.54
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Outliers

Example: Effect of education on wages
Fitted line without outlier. Fitted line with outlier.
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OLS Properties
The way we selected OLS estimates  and  gives us three important
properties:

Residuals sum to zero: .

By extension, the sample mean of the residuals are zero.

The sample covariance between the independent variable and the
residuals is zero: .

The point  is always on the regression line.

You will have a chance to prove some of these later.

β̂1 β̂2

∑n

i=1 ûi = 0

∑n

i=1 Xiûi = 0

(X̄, Ȳ )
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Goodness of �t

Where are we at
We considered a simple linear regression of  on :

 and  are population parameters that describe the "true"
relationship between  and .

Problem: We don't know the population parameters. The best we can
do is to estimate them.

Yi Xi

Yi = β1 + β2Xi + ui.

β1 β2

Xi Yi
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Goodness of �t

Where are we, continued
We derived the OLS estimators for parameters  and  given a dataset
(X,Y) by picking estimates that minimize .

Intercept:

Slope:

β1 β2

∑n

i=1 û2
i

β̂1 = Ȳ − β̂2X̄.

β̂2 = .
∑

n

i=1(Yi − Ȳ )(Xi − X̄)

∑n
i=1(Xi − X̄)2
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Where are we
With the OLS estimates of the population parameters, we constructed a
regression line:

 are predicted or �tted values of .

You can think of  as an estimate of the average value of  given a
particular of .

OLS still produces prediction errors: .

Put differently, there is a part of  we can explain and a part we
cannot: .

Ŷi = β̂1 + β̂2Xi.

Ŷi Yi

Ŷi Yi

Xi

ûi = Yi − Ŷi

Yi

Yi = Ŷi + ûi
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Goodness of Fit

Regression 1 vs. Regression 2
Same slope.

Same intercept.

Q: Which �tted regression line "explains"* the data better?

* Explains = �ts.
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 = 0.72  = 0.07

Goodness of Fit

Regression 1 vs. Regression 2
The coef�cient of determination  is the fraction of the variation in 
"explained" by  in a linear regression.

 explains all of the variation in .
 explains none of the variation in .

R2 Yi

Xi

R2 = 1 ⟹ Xi Yi

R2 = 0 ⟹ Xi Yi

R2 R2
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Explained and Unexplained Variation
Residuals remind us that there are parts of  we can't explain.

Sum the above, divide by , and use the fact that OLS residuals sum to
zero to get .

Total Sum of Squares (TSS) measures variation in :

We will decompose this variation into explained and unexplained parts.

Yi

Yi = Ŷi + ûi

n

¯̂u = 0 ⟹ Ȳ =
¯̂
Y

Yi

TSS ≡
n

∑
i=1

(Yi − Ȳ )2.
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Explained and Unexplained Variation
Explained Sum of Squares (ESS) measures the variation in :

Residual Sum of Squares (RSS) measures the variation in :

Goal: Show that .

Ŷi

ESS ≡
n

∑
i=1

(Ŷi − Ȳ )2.

ûi

RSS ≡
n

∑
i=1

û
2
i .

TSS = ESS + RSS
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Step 1: Plug  into TSS.

 
 

Step 2: Recall that  and .

 

 

 

Yi = Ŷi + ûi

TSS

= ∑n

i=1(Yi − Ȳ )2

= ∑
n

i=1([Ŷi + ûi] − [
¯̂
Y + ¯̂u])2

¯̂u = 0 Ȳ =
¯̂
Y

TSS

= ∑
n

i=1 ([Ŷi − Ȳ ] + ûi)
2

= ∑
n

i=1 ([Ŷi − Ȳ ] + ûi)([Ŷi − Ȳ ] + ûi)

= ∑
n

i=1(Ŷi − Ȳ )2 +∑
n

i=1 û
2
i + 2∑

n

i=1 ((Ŷi − Ȳ )ûi)



Step 3: Notice ESS and RSS.

 
 

TSS

= ∑
n

i=1(Ŷi − Ȳ )2 +∑
n

i=1 û
2
i + 2∑

n

i=1 ((Ŷi − Ȳ )ûi)

= ESS + RSS + 2∑
n

i=1 ((Ŷi − Ȳ )ûi)



Step 4: Simplify.

 
 

Step 5: Shut down the last two terms. Notice that

  
 

 

TSS

= ESS + RSS + 2∑
n

i=1 ((Ŷi − Ȳ )ûi)
= ESS + RSS + 2∑n

i=1 Ŷiûi − 2Ȳ ∑n

i=1 ûi

∑n

i=1 Ŷiûi

= ∑n

i=1(β̂1 + β̂2Xi)ûi

= β̂1 ∑
n

i=1 ûi + β̂2 ∑
n

i=1 Xiûi

= 0



Goodness of Fit

Calculating 
.

.

 is related to the correlation between the actual values of  and the
�tted values of .

Can show that .

R2

R2 = ESS
TSS

R2 = 1 − RSS
TSS

R2 Y

Y

R2 = (r
Y ,Ŷ

)2
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Goodness of Fit

So what?
In the social sciences, low  values are common.

Low  doesn't mean that an estimated regression is useless.

In a randomized control trial,  is usually less than 0.1.

High  doesn't necessarily mean you have a "good" regression.

Worries about selection bias and omitted variables still apply.

R2

R2

R2

R2
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