Simple Linear Regression: Estimation
EC 320: Introduction to Econometrics
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Housekeeping

Short Assignments:

o Short Assignments are due by 5 PM Monday every week other than
Week 1 and the week after Midterm week.

Tentatively, Problem Sets are due 5 PM Fridays of Week 2, 4,7 and 9.

| will drop the three lowest scores of short assignments, and lowest
score of problem set.

No late submission is accepted.

Last reminder.
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Where Are We?

Where we've been

e Reviewed core ideas from statistics

Where we're going

Consider how to think about how two variables related to each other.

o We will learn the mechanics of Ordinary Least Squares (OLS)
regressions

e Interpret regression results (mechanically and critically)

e Lays a foundation for more-sophisticated regression techniques.
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Simple Linear Regression
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Addressing Questions

Example: Effect of education on wages

Policy Question: Does more education increase wages ?

« Empirical Question: Does the years of education increase wages ? If so,
by how much ?

How can we answer these questions?
e Prior beliefs.
e Theory.

e Data!
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Addressing Questions with Data

These are data from the 1976 Current Population Survey.
o Taken from R package wooldridge, the dataset is called wageT.
e 526 observations on 24 variables:

e The variables are measurements of wages, years of education, level of
work experience, demographics (sex, race, marital status, number of
dependents), location in US, type of industry.

7 /53



Take 1: Let's "LooR" at Data

Example: Effect of education on wages

Search:

Wages Education
1 3.1 1
2 3.24 12
3 3 11
4 6 8
5 53 12
6 8.75 16

Showing 1to 6 of 526 entries Previous Next
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Example: Effect of education on wages

"Looking" at data wasn't especially helpful.
Let's try using a scatter plot.

 Plot each data pointin (X,Y)-space.

e« Education on the X-axis.

e Wages on the Y-axis.
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Example: Effect of education on wages
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Example: Effect of education on wages

But our question was

Does the years of education increase wages ? If so, by how much
?

The scatter plot and correlation coefficient provide only a partial answer, if
even.

It ONLY tells us that we usually observe higher years of education and
higher wages together.
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Correlation is not causation
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Correlation coefficient is 0.76 even larger that before!
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Example: Effect of education on wages

Our next step is to estimate a statistical model.

To keep it simple, we will relate an explained variable Y to an explanatory

variable X in a linear model.
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Simple Linear Regression Model

We express the relationship between a explained variable and an
explanatory variable as linear:

YVi= 01+ B Xi + u.
¢ (3 is the intercept or constant.

e 5 is the slope coefficient.

e wu; IS an error term or disturbance term.

Simple = Only one explanatory variable.
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Simple Linear Regression Model

The slope coefficient tells us the expected change in Y; when X; increases
by one unit.

Y, = p1+ (o X; +u;
"A one-unit increase in X; is associated with a Bs>-unit increase in Y;!"

Under certain (strong) assumptions about the error term, /35 is the effect of
X,‘ on Y;

o Otherwise, It's the association of X; with Y;.
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Simple Linear Regression Model

The error term reminds us that X; does not perfectly explain Y;.
Y =81+ o X; +u;
Represents all other factors that explain Y;.

e Useful mnemonic: pretend that u stands for "unobserved" or
"unexplained."
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Take 3, continued

Example: Effect of education on wages

How might we apply the simple linear regression model to our question
about the effect of on education on wages ?

e Which variable is X? Which is Y?

Wage, = 1 + f2Education; + ;.
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Take 3, continued

Example: Effect of education on wages

How might we apply the simple linear regression model to our question
about the effect of on education on wages ?

e Which variable is X? Which isY?
Wage, = 1 + f2Education; + ;.

e (1 Is the wage rate without college.
e (5 is the increase in wages when years of education increase by one.
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Take 3, continued

Example: Effect of education on wages
Wage, = (1 + f2Education; 4 u;.

B1 and By are the population parameters we want, but we cannot observe

them.

Instead, we must estimate the population parameters.
e B; and B, generate predictions of wage, called wage,.

o We call the predictions of the dependent variable fitted values.

« Together, these trace a line: wage;, = 31 + B2Educationi.
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Take 3, attempted

Example: Effect of education on wages

Guess: 31 =1 and Bz = 2.
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Example: Effect of education on wages

Guess: 31 = 10 and 32 = 0.
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Using Bl and Bz to make Y; generates mistakes called residuals:
u; =Y; — Y.

e Sometimes denoted e;.

22 | 53



Example: Effect of education on wages

Using 31 = 5 and B85 = 0.5 to make wages, generates residuals.
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We want an estimator that makes less mistakes in our prediction.
u; IS @ measure of mistake for observation .
« S0, one measure of total mistake for all observations is ", 4;

But mistakes can be positive and negative. When we add them, it cancels
each other. So, Y7, 4; is a bad measure of total mistakes.

Solution: Minimize the sum of squared residuals a.k.a. the residual sum of

squares (RSS).

e Squared numbers are never negative.
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Example: Effect of education on wages

RSS Bigger penalties are given for bigger mistakes in prediction.
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Minimizing RSS
We could test thousands of guesses of 31 and BQ and pick the pair that
minimizes RSS.

e In fact, some estimation process involves doing just that. But that is not
what we are interested in here.

We just do a little math and derive some useful formulas that give us RSS-
minimizing coefficients without the guesswork.
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Ordinary Least Squares (OLS)
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The OLS estimator chooses the parameters Bl and Bg that minimize the
residual sum of squares (RSS):

n

. ~2
min u,

B, By =1

This is why we call the estimator ordinary least squares.
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Deriving the OLS Estimator

Outline

For details, see textbook. In summary:

« Step 1. Replace Y " | faf with an equivalent expression involving 8, and

Ba.

o Step 2. Take partial derivatives of our RSS expression with respect to B,
and 32 and set each one equal to zero (first-order conditions).

o Step 3. Use the first-order conditions to solve for 81 and 32 In terms of
data on Y; and Xj;.

o Step 4. Check second-order conditions to make sure we found the B
and 32 that minimize RSS.
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Deriving OLS estimator, step 1

n

RSS(B 15 Bz) = Z '&3 ... We substitute expression for ;

1=1

~. ~.
IIMS IIMS
— —

(Y; — Bl — B2Xi)2 ... We expand square term

A2 A2 . . .
(Y;z + B + 52Xi2 —28.,Y; — 28, X.Y; + 28,8, X;)
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Deriving OLS estimator, step 2

Minimization review

o 3R:9»5' —0
084

o 8R§'S —0
0B,
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Deriving OLS estimator, step 2 & 3

We take the partial derivatives and set them to zero:

. 65/;55 =0 = 206, - 231, Vi+28,3 " Xi=0... (1)

. agéss =0 = 28, S X2-2>" XY+ 28, S Xi=0 ... (2)
2

o These are called normal equations.

This is a 2x2 simultaneous equation system where we are solving for
B1 & B5. We know how to solve this !

Step 4 Is beyond our scope. Trust me.
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OLS Formulas

After solving the simultaneous equation system above, we get:

Slope coefficient

. YL G-V - X)

S NG o

Intercept

;Cb>
|
=i
|

20>

[\
P
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Slope coefficient

The slope estimator is equal to the sample covariance divided by the
sample variance of X:
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Coefficients

Example: Effect of education on wages, take 4

Using the OLS formulas, we get Bl =-0.9 and 32 = 0.54.
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Coefficient Interpretation

Example: Effect of education on wages

Using OLS gives us the fitted line
Wage, = B 1+ B oEducation; Wage, = —0.9 + 0.54 Education;
What does 31 = -0.9 tell us?

What does Bz = 0.54 tell us?

Gut check: Does this mean that people without any education pay to work ?
Gut check: Does this mean that one extra year of education cause wages to

go up by $0.54 ?

e Probably not. Why?
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Coefficient Interpretation

Correlation is not causation

These points would be discussed in future. | just want to contain your
excitement!

There are many issues with this analysis. Let us discuss a few.

We must think through the data generating process before we interpret the
coefficients.

In statistics and in empirical sciences, a data generating process
IS a process in the real world that "generates" the data one is
interested in. (Prof. Wiki)
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Coefficient Interpretation

Correlation is not causation

e Government regulation leads to a situation where most people undergo
10 years of education at the least.

e Loosely speaking, we are extrapolating to say things like wage = -0.9 if
years of education = 0.

o People with higher educational ability goes to college. They may have
fewer behavioral problems. They may comes from richer families. Wages
are also determined by many other factors - experience, field of study,
so many other things. We will tackle that in Multiple Linear Regression.

e Our econometric procedure simply captures the association between
lower(higher) levels of education and lower(higher) wages.
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Coefficient Interpretation

e Wwe cannot say that each unit increase in years of education causes
wages to go up by $0.54.

e Do we think an additional year of education will have the same impact
regardless of the level of education ?

o What about grade 1vs 2 ? completing 3 years of college vs 4 (and
getting the degree ?)

The correct interpretation is a humble one:

Bz = 0.54 means that one more year of education is associated with a 0.54
increase in wage rate on average, given everything else remains constant.
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Example: Effect of education on wages

Fitted line without outlier. Fitted line with outlier.
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OLS Properties

The way we selected OLS estimates Bl and 82 gives us three important
properties:

e Residuals sumto zero: )" ; @; = 0.
o By extension, the sample mean of the residuals are zero.

e The sample covariance between the independent variable and the
residuals is zero: > | X;4; = 0.

« The point (X,Y) is always on the regression line.

e You will have a chance to prove some of these later.
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Goodness of fit

Where are we at
We considered a simple linear regression of Y; on X;:
Y; = 81 + o X; + uy.

e 1 and B2 are population parameters that describe the "true”
relationship between X; andY;.

e Problem: We don't know the population parameters. The best we can
do is to estimate them.
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Goodness of fit

Where are we, continued

We derived the OLS estimators for parameters 8; and By given a dataset
(XY) by picking estimates that minimize 3", ;.

o Intercept:

« Slope:
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Where are we

With the OLS estimates of the population parameters, we constructed a
regression line:

Yi — Bl —+ BzXz'-
« Y; are predicted or fitted values of Y;.

« You can think of Y; as an estimate of the average value of Y; given a
particular of X;.

A

OLS still produces prediction errors: u; = Y; — Y;.

e Put differently, there is a part of Y; we can explain and a part we
cannot: Y; = f/Z + u;.
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Goodness of Fit

Regression 1 vs. Regression 2

e Same slope.

e Same Iintercept.

Q: Which fitted regression line "explains™ the data better?

" Explains = fits.
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Goodness of Fit

Regression 1 vs. Regression 2

The coefficient of determination R? is the fraction of the variation in Y;
"explained" by X; in a linear regression.

e R? =1 = X, explains all of the variation in Y.
e R2 =0 = X, explains none of the variation in ;.

R? =072 R? = 0.07
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Explained and Unexplained Variation

Residuals remind us that there are parts of Y; we can't explain.
Y, =Y + 4

e Sum the above, divide by n, and use the fact that OLS residuals sum to

A

zerotogeta =0 = Y =Y.

Total Sum of Squares (TSS) measures variation in ¥;:

TSS = i(Y, - Y)2

1=1

o We will decompose this variation into explained and unexplained parts.
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Explained and Unexplained Variation

Explained Sum of Squares (ESS) measures the variation in ¥;:

ESS = i(ﬁ ~Y)2

=1

Residual Sum of Squares (RSS) measures the variation in u;:

RSS = i,
i=1

Goal: Show that TSS = ESS + RSS.
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Step 1: Plug Y; = Y; + 4; into TSS.

TSS
- YL -TR
= S (i ] — [V + )

Step 2: Recall thata = 0and Y = V.

TSS
=y (1% - V) 4 )
= 30 (% = V) + i) ([f/. Y] + i)
= S (- P+ i+ 2 (- Vi)

2



Step 3: Notice ESS and RSS.

TSS
= S V) a2 T (- V)
=ESS+RSS+2> 1 ((ffi - Y)fa,,-)



Step 4: Simplify.

TSS
—ESS+RSS+2X1, (Vi - V)i
— BSS +RSS + 27, Vid, — 2Y Y7, @

Step 5: Shut down the last two terms. Notice that

> Yty
_Ez 1(51+52 i)U;

—512 =1 z_'_ﬂzzz 1XzAz
=0



Goodness of Fit

Calculating R?
« B2 =515

2 _ 1 _ RSS
e R =1- 75,

R? is related to the correlation between the actual values of Y and the
fitted values of Y.

« Canshow that R? = (ry, ;)*.
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Goodness of Fit

So what?

In the social sciences, low R? values are common.
Low R? doesn't mean that an estimated regression is useless.

e In a randomized control trial, R? is usually less than 0.1.
High R? doesn't necessarily mean you have a "good" regression.

o Worries about selection bias and omitted variables still apply.

53 /53



